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Single-nucleotide polymorphisms (SNPs) constitute the great ma-
jority of variations in the human genome, and as heritable variable
landmarks they are useful markers for disease mapping and re-
solving population structure. Redundant coverage in overlaps of
large-insert genomic clones, sequenced as part of the Human
Genome Project, comprises a quarter of the genome, and it is
representative in terms of base compositional and functional
sequence features. We mined these regions to produce 500,000
high-confidence SNP candidates as a uniform resource for describ-
ing nucleotide diversity and its regional variation within the
genome. Distributions of marker density observed at different
overlap length scales under a model of recombination and popu-
lation size change show that the history of the population repre-
sented by the public genome sequence is one of collapse followed
by a recent phase of mild size recovery. The inferred times of
collapse and recovery are Upper Paleolithic, in agreement with
archaeological evidence of the initial modern human colonization
of Europe.

Information on the demographic history of a species is
imprinted in the distribution of sequence variations in its

genome. The completion of a draft sequence for the human
genome provides a useful substrate for both the detection of
sequence variants and a study of their distribution. To date, the
number of publicly available single-nucleotide polymorphisms
(SNPs) well exceeds two million (dbSNP build 105). The main
data sources for computational SNP discovery have been
expressed sequence tags (ESTs) (1, 2), genomic restriction
fragments (3), sequences aligned to genome both from the
ends of bacterial artificial chromosomes (BACs) and from
random shotgun sequences of clone sequence, and overlapping
regions of genomic clone sequences themselves (4, 5). Gen-
erally, SNPs from these data were detected in surveys of a few
chromosomes, an ascertainment strategy that biases allele
frequency patterns toward common variations (6), and thus
these data are expected to fall into a range that is unlikely to
contain the majority of clinically important mutations (7, 8).
Under the ‘‘common disease, common allele’’ hypothesis,
however, these common variants may be of special importance.
In either case, to assess the potential utility of these data for
inferences of gene function or population history, one must
first understand its overall structure and distribution in the
genome. Statistical power in such analyses requires a large
amount of data, ascertained under uniform, well-characterized
conditions. Clone overlaps and their derived variations are
well suited for this task, as long (up to 100 kb) regions of
redundant sequence coverage distributed in roughly even
intervals (5), covering nearly a quarter of the genome. The fact
that regions in a wide range of overlap length are available
makes this set especially suited for studying the effects of
recombination and demographic size f luctuation on the spatial

(density) distribution of genomic sequence variations. To this
end, we built a set of reagents (pairwise sequence alignments
and their corresponding sets of variation) by analyzing the
overlapping regions of large-insert clones sequenced as part of
the human genome project. These data provided marker
density observations grouped by overlap fragment length.
Extending previous methods (9, 10), we implemented simula-
tion and numerical techniques to estimate population genetic
parameters that best describe these observed data. We report
results indicating that both the effects of recombination and
substantial changes in effective population size are required to
fit models of neutral sequence evolution to observed marker
densities.

Methods
Overlap Detection, SNP Discovery, and Tabulation of Observed Marker
Density. The initial data consisted of genomic clones of either
finished or draft quality that were part of the September 5, 2000,
genome data freeze. Regions of known human repeats and low
complexity sequence were masked with REPEATMASKER (Arian
Smit, http:yyrepeatmasker.genome.washington.edu). Candidate
sequence overlaps were determined by a fast initial similarity
search with MEGABLAST (11), followed by pairwise alignment
with the dynamic programming algorithm CROSSoMATCH (Phil
Green, www.phrap.org). Draft quality sequence is often
composed of unordered fragments; hence an overlap between
two such clones is broken up into a set of partial overlap
fragments. Overlaps were retained for further analysis if: (i) both
clones resided on the same chromosome, as could be determined
by physical mapping; and (ii) total overlap length was .6 kb,
counting only overlap fragments longer than 3 kb in the total.
Overlap fragments were analyzed with the POLYBAYES SNP-
discovery program (12). An observed mismatch was called a
candidate SNP if the corresponding POLYBAYES probability
value was at least 0.80, and there were no discrepancies in the five
base pairs immediately flanking either side. To avoid false
positive predictions caused by the erroneous alignment of di-
vergent copies of segmental duplications (sequence paralogy) we
have excluded overlap fragments with .1 SNP per 400 nucleo-
tides. This censorship procedure, necessary to maintain a high
quality for the candidate set, also removes overlap fragments in
which the inherent polymorphism rate was genuinely high. The
resulting bias was estimated in subsequent analysis. An addi-
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tional bias was introduced when regions of low-quality sequences
were analyzed. These regions cannot be effectively evaluated for
SNPs, as sequence differences are more likely to represent
sequencing errors than true polymorphisms. We rectified this
bias by adjusting the overlap interval to include only the high-
quality portions of the overlaps [i.e., where the base quality value
(13) was .35 in both sequences]. This procedure discarded '5%
of the total overlap length.

Integration with the Public Genome Assembly. To ensure an un-
biased evaluation of the density distributions with respect to the
reference genome sequence, we included only those portions of
our overlaps that were also present in the genome assembly
based on the September 5, 2000, data (14). We evaluated repeat
content in the genome, as well as in the clone overlap regions by
using REPEATMASKER. We used custom software to compute
G1C nucleotide and CpG dinucleotide content.

SNP Validation and Estimation of Allele Frequency. The experimen-
tal methods and conditions used to assess the candidate SNPs
were fully described previously (15).

Modeling Marker Density Distributions. Mismatch distributions de-
scribe the likelihood of observing k (k 5 0, 1, 2, . . .) polymorphic
sites (mismatches) when n sample sequences of a given length,
L, are compared (n 5 2 in this study). Traditionally, the opposing
effects of meiotic recombination and co-ancestry have been
studied under two simple, yet extreme, scenarios (Fig. 1a). A
simple (first-order) model that ignores any structure imposed by
demographic history and assumes complete independence be-
tween the genealogies of neighboring sites because of recombi-
nation (infinite recombination model) predicts a Poisson mis-
match distribution driven solely by the mutation rate (16).
Conversely, a first-order model that accounts for genealogical
structure only through static demographic history and ignores
recombination (zero-recombination model) predicts a geometric
distribution of mutational differences (17).

A detailed demographic history described by the time evolu-
tion of effective population size, Ne, profoundly affects the
distribution of polymorphic sites shared between individuals. In
particular, a large increase of the effective population size yields
an overabundance of new lineages that increase the likelihood
that random sequence pairs will harbor one or more mutational
differences (9) (Fig. 1b). Alternatively, a sharp decrease in
effective population size raises the likelihood of relatedness
between random pairwise DNA samples, resulting in the oppo-
site effect: an overrepresentation of sequence identity (zero
difference) as seen in Fig. 1c. Both models represent a second-
order changing population size dynamics characterized by dif-
ferent effective population sizes in each of two epochs: an
ancestral size N2, followed by a size change to N1, happening T1
generations ago. It is possible to go to higher-order models by
increasing the number of epochs in a population history. An
example third-order (three-epoch) model is the ‘‘bottleneck’’
dynamics (i.e., a collapse followed by a phase of recent popu-
lation recovery) depicted in Fig. 1d.

While the density distribution can be computed explicitly for
zero-recombination models even with high-order population
dynamics (9), no explicit formulas are available for models with
realistic levels of recombination. In these cases, we are reliant on
numerical simulations that use the coalescent process with
recombination (18). Implementing this technique with custom
software, we were able to study the counterparts of the previous
(zero-recombination) models with realistic levels of recombina-
tion (Fig. 1). Models used a uniform genome-averaged mutation
rate, m 5 2.0 3 1028 per site per generation [obtained as a
compromise between prominent estimates (19, 20)] and a uni-
form genome-averaged recombination rate of r 5 1.0 3 1029 per

nucleotide per generation [obtained from recombination fre-
quencies measured across the genome (21)] when appropriate.
We note that an alternative estimate of m 5 1.0 3 1028, although
less conventional, is perhaps more plausible, as it accounts for a
larger ancestral anthropoid population size and older separation
times (20, 22). The latter rate estimate will yield a human
effective size estimate of 20,000 rather than 10,000 (below), and
double the time estimates for demographic events. Initial sim-
ulations were run with 100,000 replicates per parameter set, and

Fig. 1. Marker density distributions predicted under competing population-
genetic models (for 10-kb pairwise aligned length, censored at 25 SNPs per
alignment). (a) First-order, stationary history. (b) Second-order, expansion
history. (c) Second-order, collapse history. (d) Third-order, ‘‘bottleneck’’-
shaped history. r indicates the per nucleotide, per generation recombination
rate.
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refinements for the best-performing parameter sets were reeval-
uated with one million replicates.

Model Parameterization. A given model is specified by a recom-
bination rate (r 5 0 or 1.0 3 1029) and a vector of population
sizes (Ni) and epoch durations (Ti) determined by the model’s
order (for examples of such parameter sets see Table 1). Values
of Ni (ranging from 1,000 to 100,000) were sampled in units of
100 for numerical calculations and for one-epoch model simu-
lations, and in units of 1,000 for higher-epoch model simulations.
Values of Ti (ranging from 100 to 10,000) were sampled in units
of 100 for all cases. Predicted marker density distributions were
generated for each length scale analyzed (L 5 4, 6, 8, 10, 12, 14,
and 16 kb) for each parameter set considered from the multi-
dimensional parameter space defined above.

Model Evaluation. Parameter sets within a fixed model structure
were compared by computing, for each competing model, a
degree of fit between the observed (o) marker density distribu-
tion and the probability distribution predicted by each of the
models (m), using the log likelihood of the data given the model
in question. Because observations between different overlap
fragment length classes, as well as observations for each of the
number of differences, k, were independent, this likelihood is
described by a multinomial distribution:

P~oum! 5 P
L

S OL

OL,0, . . . , OL,CL
DP

k50

CL

mL,k
OL,k,

where OL is the number of overlap fragments in class L, OL,k is
the number of fragments with k differences, CL is the maximum

number of differences permitted by the censorship procedure for
length L, and mL,k is the marker density probability predicted by
the model, at length class L, for k differences. In evaluating an
alternative goodness of fit for a given model, we used the x2

metric (see Discussion):

x2 5 O
L

O
k50

CL ~OL,k 2 OLmL,k!
2

OLmL,k
.

Using either of the above metrics requires the model-predicted
probability distributions to be calculated very accurately, espe-
cially in mismatch categories with low predicted probabilities. In
those cases where the distribution can be calculated only with
simulations, accuracy is constrained by the practical upper limit
on the number of simulation replicates. To avoid numerical
instability, we restricted fit testing to the first KL categories
within each length class such that categories k 5 0, 1, . . . , KL
contain 95% of all fragments for that class.

Model Comparison. The performances of different model struc-
tures were compared based on the maximum likelihood param-
eter estimates for each model structure. Standard tools of
normal hypothesis testing could be used (23) when two nested
models were compared, by calculating the likelihood ratio, l,
between the less restricted and more restricted model. The
quantity 2 ln(l) is expected to be asymptotically x2 distributed
with degrees of freedom equal to the difference in the number
of parameters. Increasing the number of epochs by one adds two
parameters to the model (the effective population size, and the
duration of the new epoch). Considering recombination adds
one extra parameter to the model structure. The less restricted

Table 1. Performance of population genetic models of various complexities for fitting marker density data observed in interindividual
BAC overlap fragments

Model structure
Recombination

rate (r)
Best-fitting

model parameters
Model

log likelihood

Improvement because of
inclusion of recombination

df 5 1

Improvement because of
inclusion of extra epoch

df 5 2

Free combination ` N 5 9,200 213,576.89 — —

One-epoch 0 N1 5 12,000 2626.11 — —

1028 N1 5 10,300 2566.25 2 ln l 5 119.72 (P , 1 3 1027) —

Two-epoch N2 5 13,200
0 T1 5 200 2559.75 — 2 ln l 5 132.72 (P , 1 3 1027)

N1 5 2,000

N2 5 11,000
1028 T1 5 700 2466.82 2 ln l 5 185.86 (P , 1 3 1027) 2 ln l 5 198.86 (P , 1 3 1027)

N1 5 4,000

Three-epoch N3 5 9,000
T2 5 7,000

0 N2 5 50,000 2469.64 — 2 ln l 5 180.22 (P , 1 3 1027)
T1 5 7,000
N1 5 9,000

N3 5 11,000
T2 5 400

1028 N2 5 5,000 2463.07 2 ln l 5 13.14 (P , 2.89 3 1024) 2 ln l 5 7.5 (P , 0.023)
T1 5 1,200
N1 5 6,000

For each model, we report the population parameter values within a given model structure that produced the best fit to the observations. We also report
the corresponding log likelihood, ln P(dataumodel). The penultimate column reports the statistical significance of model improvement attributable to the
introduction of a genome average recombination rate into our models (adding one extra model parameter). The final column reports the significance of the
model improvement attributable to the introduction of an additional epoch (two extra model parameters). Significance of the improvement was evaluated with
statistical hypothesis testing for nested model structures (see Methods).
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model (the one with more free parameters) was accepted when
the x2 value yielded P # 0.05 in a one-tailed test.

Monte Carlo Testing of Data Fit. To analyze the behavior of our
models in the face of increasing amounts of observed data we
generated random subsets of the observed data set of given
fractions. At each fraction, we generated 1,000 subsets. For each
subset, and for a given model, we determined whether the fit
between the predicted marker density distribution and the
observation subset could be rejected as statistically insignificant
by the described x2 test. We calculated the proportion of subsets
for which the model prediction could not be rejected, and
tabulated these proportions for each of the data fractions
analyzed.

Results
Data Collection and Assessment. We analyzed 25,901 genomic
clones consisting of 7,122 finished and 18,779 draft sequences for
which PHRAP (13) base-quality scores were available. We iden-
tified 21,020 clone overlaps (Methods) comprising 124,356 over-
lap fragments (see Methods). The total pairwise length of these
overlaps was 1,105 megabases. Using the POLYBAYES SNP dis-
covery tool (12), we detected and submitted to dbSNP (24)
507,152 candidate SNPs (Methods). When the data were
restricted to overlaps also present in the genome assembly
(Methods), the number of overlaps reduced to 18,074 overlaps
(average length of 51.1 6 35.5 kb) containing 399,067 candidate
SNPs. Measures of G1C, CpG, and repeat content in the overlap
set were generally equivalent to average genome values, indi-
cating it to be representative of the complete genome assembly
(see Supporting Text, which is published as supporting informa-
tion on the PNAS web site, www.pnas.org). To evaluate the
quality of candidate SNPs, we tested for segregation in human
populations and evaluated the sequence data for intrinsic error
(see supporting information on the PNAS web site for details).
Verification experiments show that the computational SNP
predictions from the BAC overlap sequences are high quality,
and the majority of SNPs are informative in one or more world
populations (15).

Estimation of Genomewide Nucleotide Diversity. By comparing the
number of SNPs to the total length of pairwise overlaps ana-
lyzed, we estimated the overall value of pairwise nucleotide
diversity, û, for our complete dataset as 5.047 3 1024 per
nucleotide. This value, however, is biased by the inclusion of
overlaps derived from the same source chromosome from a
single individual. For the remainder of this study, we thus used
only clone overlaps derived from interindividual libraries where
both clone sequences were of draft quality. There were 3,174
such overlaps (18,152 overlap fragments, total overlap length 144
megabases). The nucleotide diversity value observed in this set
(û 5 7.571 3 1024) is in excellent agreement with the value
observed for shotgun reads aligned to the human genome (25).
Our value for û indicates an expectation of one SNP in every
1,321 bp of paired sequence (n 5 2). This average value,
however, must be treated with caution, as the actual number of
SNPs in an overlap of a given length is highly variable at all length
scales examined (Fig. 2a). Our value for û corresponds to an
effective size estimate of Ne 5 9,464, if the mutation rate is 2.0 3
1028. Ne should be doubled if the mutation rate is 1.0 3 1028,

putting it in line with the figure of 17,500 estimated from Alu
diversity in the human genome (6).

Of Two Extreme Models, Zero Recombination vs. Full Recombination,
Zero Recombination Provides the Closest Fit to Our Data. Based on
the multikilobase scale marker density distributions in the
overlap data, the ‘‘zero-recombination’’ model provides a
clearly superior fit (Table 1) compared with the ‘‘infinite

recombination’’ model, demonstrating that the inheritance of
markers in close proximity is strongly correlated, and is
consistent with extensive linkage disequilibrium observed in
humans (26). This finding is an improvement over our previous
study which, on the basis of marker density distribution
measured in short read fragments aligned to genome sequence,
did not carry sufficient power to distinguish between these
competing models (25).

Examination of Second-Order Demographic Dynamics (Two-Epoch
Model) Shows Population Collapse as the Dominant Effect. Second-
order models provided a superior fit compared with all station-
ary histories tested. The best-fitting parameters describe a
severe, 2- to 7-fold, collapse of population size several hundred
generations ago (Table 1). This result is consistent whether we
used the zero-recombination models or a genome average
recombination value. Additionally, within the class of all second-
order models tested, models with a realistic recombination value
fit significantly better than those that disregarded recombination
effects.

Fig. 2. Comparison of model predictions to observed marker density data.
(a) Marker density distributions observed in the interindividual overlap frag-
ment data (ocher) and corresponding distributions predicted by our overall
best-fitting, three-epoch bottleneck model (gray), at each analyzed length. (b)
Predictions under the best-performing parameter set for each model structure
studied, compared with observed (ocher) data (pairwise overlap length, 10 kb;
censorship at 25 SNPs per alignment). r indicates models with recombination.
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Third-Order Models Show a Bottleneck History. No third-order
model that disregarded recombination could produce a fit
superior to that of the best-fitting second-order (collapse)
model with recombination (Table 1). However, the third-order
models with recombination did produce an improved fit (see
Fig. 2a) with the best-fitting parameters representing a ‘‘bot-
tleneck’’-shaped population history. A visual representation of
the best-performing parameter sets within each model class is
shown in Fig. 2b. These parameter values, together with the
quantitative description of the fit values are given in Table 1.
The third-order model structure with bottleneck parameters
(Table 1) is our best description of the population history
imprinted in the BAC overlap variation data. While all sets
were qualitatively similar, the best-fitting parameter combi-
nation was slightly different for each overlap fragment length
(data not shown). The overall optimum thus represents a
compromise among the best-fitting parameter sets. We com-
pared the predicted censored nucleotide diversity values pre-
dicted by the optimal model to the observed values at each
length scale analyzed (Fig. 3). The fit is better at shorter
sequence length than at longer lengths, as the majority of data
available at shorter lengths were weighted heavier during the
determination of a global optimum.

Unbiased Estimates of Genomewide Nucleotide Diversity. The direct
measurement of pairwise nucleotide diversity is confounded
with the effects of the censorship procedure (Methods). Using
our best-fitting model, we projected the shape of the maker
density curve beyond the censorship limit, and estimated the
unbiased value of pairwise nucleotide diversity intrinsic to
the overlap dataset as û 5 8.25 3 1024 per site per generation
or one substitution-like polymorphism per 1,212 nucleotides.
Assuming a genome average mutation rate of m 5 2.0 3 1028 or
1.0 3 1028 per site per generation, the corresponding long-term
effective population size is Ne 5 10,313 or 20,626, respectively.

Discussion
The dataset considered here, by virtue of its global nature, is
expected to be robust against selection-induced distortions at
individual loci and serves as a proper reagent to test theory
describing the distribution of the number of mismatches in
pairwise comparisons observed in a large number of different
genomic regions.

Evidence from both archeological and genetic sources sug-
gests that modern human populations are the product of an
episode of explosive population growth beginning in the Pleis-

tocene (9). Mismatch distributions from the hypervariable re-
gions of the human mitochondrion exhibit a wavelike shape that
has been interpreted as the sign of this expansion. However,
limitations on the number of loci available for population genetic
analysis have restricted a more detailed demographic inference
(9). Our third-order analysis indicates that the dominant effect
in our data is a collapse ca. 40,000 years ago (1,600 generations),
consistent with the timing of the initial appearance of anatom-
ically modern humans in Europe. To which population do our
results refer? The ethnic composition of the DNA donors of the
public human genome is not described, but genotyping of
diallelelic, insertion-deletion type polymorphisms mined from
the same BAC overlaps (27) suggests that the majority of these
sequences represent donors of European origin. Similar patterns
resulting in reduction of diversity and extension of linkage
disequilibrium in European samples (26, 28–31), and reports of
long invariable regions in the human genome (32) have been
published. If our results indeed describe European chromo-
somes, then our estimated time of collapse is in good agreement
with expansion time estimates from mitochondrial mismatch
distributions (9).

How do we reconcile the signature of a population collapse
seen in our data with the obvious recent explosive increase in
population size? The recovery visible in our data is a very modest
increase of effective population size during the Upper Paleolithic
(Table 1). This finding suggests that recent population growth is
not yet deeply imprinted in the nuclear marker density distri-
bution, presumably because of the low average nuclear mutation
rate.

Although our best, three-epoch, model produces a visually
convincing fit to the observed data (Fig. 2a), application of a
general x2 test reveals that the fit can be rejected at the 5% (or
even at the 1%) level, and the same is true for each of the other
model structures (data not shown). Does this mean that we have
to discard these models as inadequate descriptions of the ob-
served data? The models are cartoon-like, and the marker
density observed in the BAC overlap data was shaped by many
unconsidered effects. If our models are not perfect, it is natural

Fig. 4. Model assessment based on the amount of data required for rejection
by the general x2 test. For each model, at each data fraction, we have plotted
the percentage of successful trials (random data subsets for which the model
cannot be rejected by the x2 test at the 5% level). r indicates models with
recombination.

Fig. 3. Observed and predicted pairwise nucleotide diversity values at each
overlap fragment length. Predicted values were based on the best-fitting
bottleneck (three-epoch) model. Details of the censoring process (censored)
and correction for censorship (uncensored) are described in the text.
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to ask how well they perform in an ‘‘absolute’’ sense, instead of
relative terms, compared with each other. In all cases, model
rejection is based on statistical significance, which in turn is
always defined in the context of the test data at hand. Therefore,
it is possible that a model that could not be rejected on the basis
of a given dataset later proves inaccurate (rejected) when
additional testing data become available. This consideration
provides an alternative way to evaluate model accuracy, by
examining how much data are necessary for the rejection of each
of the competing models. The better the model, presumably, the
larger the dataset that is required for its rejection as inaccurate.
Accordingly, we have performed a computational experiment to
examine how a x2 measure of data fit between our observations
and best-fitting models decays as more and more of the original
data is considered. Results are shown in Fig. 4. Our best-fitting
model (three-epoch history with uniform recombination) can be
rejected only 50% of the time when subsets containing at least
15% ('2,300 overlap fragments) of the original observed data
are considered. We anticipate that evaluations of this sort will
become increasingly useful in the analysis of genome-scale data
(over-powered experiments) where numerical models will fail
traditional significance tests when genome-sized datasets are
considered.

What can we do to improve our models? We know that
mutation rates are not uniform in the nuclear genome (19).
There is also evidence for recombination hotspots (33). The
existence of hotspots implies that, at least to some degree,
recombination favors certain regions of the genome, a departure
from the uniform distribution that we have assumed in our
models. We also know that population history is far more
complex than we can capture in our cartoon-like models invoking
instantaneous stepwise changes of effective size. The same
history may or may not be true for all chromosomal regions
within the genome. There is also a large corpus of literature
discussing nonneutral effects such as selective sweeps (34). It is

desirable to refine our models by considering these effects. To
confirm the generality of our results it will be necessary to
evaluate similar data from non-European samples, analyze other
characteristic distributions of SNPs such the allele frequency
spectrum, and contrast our observations to data collected in
molecular systems with alternative mutational mechanisms such
as diallelic insertionsydeletions, short tandem repeat polymor-
phisms (STRPs), and mitochondrial polymorphisms.

The amount of heterogeneity observed in the BAC overlaps
should be a warning that average genome measures of nucleotide
diversity should be used with caution. On the other hand, our
computational experiments demonstrate that even relatively
simple models of random drift are adequate to predict the range
of variability in our data, suggesting that drift is an important (if
not the most important) component of the resultant of forces
that shape the regional distribution of human variability. It is
striking, for example, that purely neutral forces can account for
the fact that '10% of our 16-kb overlaps did not contain a single
sequence variant (Fig. 2a). Observations such as this will require
us to rethink our expectations when evaluating variation struc-
ture and its possible significance in specific genomic loci. The
mature, fully annotated human reference sequence, together
with an increase in well-characterized SNP markers, should
afford us a high-resolution view to provide context for inter-
preting regional variation data, improving existing models of
population history, and resolving the selective forces of genome
evolution.
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